All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quantum plasmon and Rashba-like spin splitting in self-assembled CoxC60 composites with enhanced Co content (x > 15)

Result description

Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled CoxC60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of CoxC60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C-60-related OA lines detected at the photon energies E-p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E-p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E-p > 2.5 eV reflect splitting of the C-60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.

Keywords

fullerenenanocompositesquantum plasmonoptical spectraenergy band splitting

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quantum plasmon and Rashba-like spin splitting in self-assembled CoxC60 composites with enhanced Co content (x > 15)

  • Original language description

    Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled CoxC60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of CoxC60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C-60-related OA lines detected at the photon energies E-p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E-p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E-p > 2.5 eV reflect splitting of the C-60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanotechnology

  • ISSN

    0957-4484

  • e-ISSN

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000424926700001

  • EID of the result in the Scopus database

    2-s2.0-85042311151

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Nano-materials (production and properties)

Year of implementation

2018