On the spectrum of leaky surfaces with a potential bias
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F18%3A00492833" target="_blank" >RIV/61389005:_____/18:00492833 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/18:00328100
Result on the web
<a href="http://dx.doi.org/10.4171/186" target="_blank" >http://dx.doi.org/10.4171/186</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/186" target="_blank" >10.4171/186</a>
Alternative languages
Result language
angličtina
Original language name
On the spectrum of leaky surfaces with a potential bias
Original language description
We discuss operators of the type H = -Delta + V(x) - alpha delta(x - Sigma) with an attractive interaction, alpha > 0, in L-2(R-3), where Sigma is an infinite surface, asymptotically planar and smooth outside a compact, dividing the space into two regions, of which one is supposed to be convex, and V is a potential bias being a positive constant V-0 in one of the regions and zero in the other. We find the essential spectrum and ask about the existence of the discrete one with a particular attention to the critical case, V-0 = alpha(2). We show that sigma(disc)(H) is then empty if the bias is supported in the 'exterior' region, while in the opposite case isolated eigenvalues may exist.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
EMS Series of Congress Reports
ISBN
978-3-03719-186-6
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
169-181
Publisher name
European Mathematical Society
Place of publication
Zurich
Event location
Trondheim
Event date
Jul 4, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000442187600009