All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gap Control by Singular Schrodinger Operators in a Periodically Structured Metamaterial

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F18%3A00497542" target="_blank" >RIV/61389005:_____/18:00497542 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/18:00328102

  • Result on the web

    <a href="http://dx.doi.org/10.15407/mag14.03.270" target="_blank" >http://dx.doi.org/10.15407/mag14.03.270</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15407/mag14.03.270" target="_blank" >10.15407/mag14.03.270</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gap Control by Singular Schrodinger Operators in a Periodically Structured Metamaterial

  • Original language description

    We consider a family {H-epsilon}(epsilon>0) of epsilon Z(n)-periodic Schrodinger operators with delta'-interactions supported on a lattice of closed compact surfaces. Within a minimum period cell one has m is an element of N surfaces. We show that in the limit when epsilon -> 0 and the interactions strengths are appropriately scaled, H-epsilon has at most m gaps within finite intervals, and moreover, the limiting behavior of the first m gaps can be completely controlled through a suitable choice of those surfaces and of the interactions strengths.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics Analysis Geometry

  • ISSN

    1812-9471

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    UA - UKRAINE

  • Number of pages

    16

  • Pages from-to

    270-285

  • UT code for WoS article

    000450683100002

  • EID of the result in the Scopus database