Optimization of the lowest eigenvalue for leaky star graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F18%3A00500202" target="_blank" >RIV/61389005:_____/18:00500202 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/conm/717/14448" target="_blank" >http://dx.doi.org/10.1090/conm/717/14448</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/conm/717/14448" target="_blank" >10.1090/conm/717/14448</a>
Alternative languages
Result language
angličtina
Original language name
Optimization of the lowest eigenvalue for leaky star graphs
Original language description
We consider the problem of geometric optimization for the lowest eigenvalue of the two-imensional Schrödinger operator with an attractive delta-interaction of a fixed strength, the support of which is a star graph with finitely many edges of an equal length is in the interval from 0 to infinity. Under the constraint of fixed number of the edges and fixed length of them, we prove that the lowest eigenvalue is maximized by the fully symmetric star graph. The proof relies on the Birman-Schwinger principle, properties of the Macdonald function, and on a geometric inequality for polygons circumscribed into the unit circle.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Contemporary Mathematics
ISBN
978-1-4704-3681-0
Number of pages of the result
11
Pages from-to
187-196
Number of pages of the book
350
Publisher name
American Mathematical Society
Place of publication
Atlanta
UT code for WoS chapter
000465195200012