All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Near-3-MeV protons from target-normal-sheath-acceleration femtosecond laser irradiating advanced targets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00508841" target="_blank" >RIV/61389005:_____/19:00508841 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/ctpp.201800127" target="_blank" >https://doi.org/10.1002/ctpp.201800127</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Near-3-MeV protons from target-normal-sheath-acceleration femtosecond laser irradiating advanced targets

  • Original language description

    Advanced targets based on graphene oxide and gold thin film were irradiated at high laser intensity (10(18)-10(19) W/cm(2)) with 50-fs laser pulses and high contrast (10(8)) to investigate ion acceleration in the target-normal-sheath-acceleration regime. Time-of-flight technique was employed with SiC semiconductor detectors and ion collectors in order to measure the ion kinetic energy and to control the properties of the generated plasma. It was found that, at the optimized laser focus position with respect to the target, maximum proton acceleration up to about 3 MeV energy and low angular divergence could be generated. The high proton energy is explained as due to the high electrical and thermal conductivity of the reduced graphene oxide structure. Dependence of the maximum proton energy on the target focal position and thickness is presented and discussed.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů