All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

In-Situ Synchrotron X-Ray Diffraction of Ti-6Al-4V During Thermomechanical Treatment in the Beta Field

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00508928" target="_blank" >RIV/61389005:_____/19:00508928 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/met9080862" target="_blank" >https://doi.org/10.3390/met9080862</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/met9080862" target="_blank" >10.3390/met9080862</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    In-Situ Synchrotron X-Ray Diffraction of Ti-6Al-4V During Thermomechanical Treatment in the Beta Field

  • Original language description

    This work aims to identify the mechanisms of restoration occurring in Ti-6Al-4V during hot plastic deformation and subsequent heat treatment. The allotropic phase transformation that occurs during cooling distorts the interpretation of the restoration mechanisms taking place at high temperatures. Therefore, analysis of deformed samples by conventional microscopy have led to controversies in the interpretation of the main dynamic restoration mechanism. Additionally, static restoration of the microstructure can occur during slow cooling, modifying the microstructure. These facts were mainly the reasons why discontinuous dynamic recrystallization and/or dynamic recovery has been reported as the main dynamic restoration mechanism for Ti-6Al-4V. In this work, we use in-situ synchrotron X-ray diffraction combined with conventional microscopy to determine the dynamic and static mechanisms of restoration during and after deformation at different strain rates. The results show dynamic recovery as main mechanism of restoration during deformation in the beta field, denoted by sub-grain formation and a misorientation dependency of the strain rate. After deformation, static recrystallization, grain growth, and coarsening of the beta grains can be observed, especially at strain rates higher than 0.1 s(-1). It is also demonstrated that the nucleation of new grains can occur within the very first seconds of the isothermal heat treatment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Metals

  • ISSN

    2075-4701

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    862

  • UT code for WoS article

    000484510000052

  • EID of the result in the Scopus database

    2-s2.0-85071030559