Modification of MoS2 structure by means of high energy ions in connection to electrical properties and light element surface adsorption
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00517281" target="_blank" >RIV/61389005:_____/19:00517281 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22310/19:43918152 RIV/44555601:13440/19:43894723
Result on the web
<a href="https://doi.org/10.1016/j.surfin.2019.100357" target="_blank" >https://doi.org/10.1016/j.surfin.2019.100357</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfin.2019.100357" target="_blank" >10.1016/j.surfin.2019.100357</a>
Alternative languages
Result language
angličtina
Original language name
Modification of MoS2 structure by means of high energy ions in connection to electrical properties and light element surface adsorption
Original language description
MoS2 samples were intentionally modified using high energy ions (He, Si and Au) at the ion energy of 1.8 MeV and the ion fluence ranging between 1 x 10(13) and 1 x 10(15) cm(-2) to tailor intentionally the surface electric and structural properties of MoS2. Light and medium energetic ions can be effectively used for ion beam micro-structuring in various materials e.g. graphene and MoS2, thus the material modification study under high energy ions leading to electronic stopping of ions is mandatory for this application. Rutherford Back-Scattering spectrometry (RBS) and Elastic Recoil Detection Analysis (ERDA) were used for elemental analysis, including hydrogen surface depth profiling, of the modified MoS2 samples. Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS) analysis were used to investigate the surface morphology influenced by the irradiation as well as to follow the surface layer elemental composition. Raman spectroscopy was employed to study the structural modification and disorder accumulation caused by energetic ion irradiation. Simultaneously, two-point method was applied for electrical properties measurement. Surface morphology modification enhances with the increasing ion fluence for all ion species. Surface deterioration and sulphur depletion in MoS2 was observed not only for heaviest ion irradiation (Au) as was expected, but also for light ions (He). Interior structure damage was observed to be the most prominent in case of Au irradiation as it was concluded from the most significant A(1g) and E-2g(1) phonon shift and broadening with increasing Au ion fluence in Raman spectra. On the other hand, the interior structure deterioration was only negligible in case of He irradiated samples. Surface hydrogen content was observed to be a function of ion implantation fluence and ion mass. Electrical resistivity was increased as a consequence of ion irradiation for heaviest ions. After Si and Au irradiation, the resistivity increased for the lowest ion fluence and subsequently decreases with increasing ion fluence being higher for the irradiated samples compared to the pristine one.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SURFACES AND INTERFACES
ISSN
2468-0230
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
12
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
100357
UT code for WoS article
000493921900020
EID of the result in the Scopus database
2-s2.0-85069569260