Spectral asymptotics of the Laplacian on Platonic solids graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00520877" target="_blank" >RIV/61389005:_____/19:00520877 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/19:00338160 RIV/62690094:18470/19:50016298
Result on the web
<a href="https://doi.org/10.1063/1.5116100" target="_blank" >https://doi.org/10.1063/1.5116100</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5116100" target="_blank" >10.1063/1.5116100</a>
Alternative languages
Result language
angličtina
Original language name
Spectral asymptotics of the Laplacian on Platonic solids graphs
Original language description
We investigate the high-energy eigenvalue asymptotics of quantum graphs consisting of the vertices and edges of the five Platonic solids considering two different types of the vertex coupling. One is the standard delta -condition and the other is the preferred-orientation one introduced in the work by Exner and Tater [Phys. Lett. A 382, 283-287 (2018)]. The aim is to provide another illustration of the fact that the asymptotic properties of the latter coupling are determined by the vertex parity by showing that the octahedron graph differs in this respect from the other four for which the edges at high energies effectively disconnect and the spectrum approaches the one of the Dirichlet Laplacian on an interval.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
122101
UT code for WoS article
000505713800001
EID of the result in the Scopus database
2-s2.0-85077077162