Ion transmission spectroscopy of pores filled with Au nanoparticles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00541435" target="_blank" >RIV/61389005:_____/21:00541435 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.nimb.2021.01.016" target="_blank" >https://doi.org/10.1016/j.nimb.2021.01.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nimb.2021.01.016" target="_blank" >10.1016/j.nimb.2021.01.016</a>
Alternative languages
Result language
angličtina
Original language name
Ion transmission spectroscopy of pores filled with Au nanoparticles
Original language description
Ion track membranes (ITM) are of long-term interest due to the high potential of applications in science and industry. However, the use of the membranes requires a detailed knowledge of (i) their structural parameters, i. e., the density and distribution of the ITM pores, the pore size (radius) and spatial shape, or (ii) the pore filling with other materials (demanding the knowledge of filling efficiency, filler confinement, or filler density). In this work, we studied the nuclear membranes prepared with pores of certain density and size and filled with Au nanoparticles. The analysis was carried out by Ion Transmission Spectroscopy (ITS). ITS is a nondestructive technique to determinate the spatial structure of (sub)micron inhomogeneities (pores, protrusions, etc.) in thin foils from the energy loss of even quasi-monoenergetic alpha particles (e.g., from a thin 241Am source) transmitted through the (empty or filled) pores. The reconstruction of the shape of the pores or pore fillings is performed by simulation of the transmission spectra using the MC code. The nuclear membranes were prepared by the irradiation of a thin polyethylene terephthalate with 157 MeV Xe+26 ions (with the fluence 10(6) cm(-2)) and the subsequent chemical etching in 9 M NaOH water solution at 50 degrees C for 40 min. The pores were filled with the Au nanoparticles (NPs) of a sub-micrometer size using the Pulse Laser Deposition (PLD), and studied by ITS. From the transmission spectra the shape of the pores filled (partially or fully) with Au NPs could be reconstructed. The ITM with pores filled with NPs were also analyzed by scanning electron microscopy (SEM). The results showed good agreement with the MC simulation of the ITS data.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nuclear Instruments & Methods in Physics Research Section B
ISSN
0168-583X
e-ISSN
1872-9584
Volume of the periodical
491
Issue of the periodical within the volume
MAR
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
29-33
UT code for WoS article
000620824300004
EID of the result in the Scopus database
2-s2.0-85100384413