Singular Schrodinger operators with prescribed spectral properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00552559" target="_blank" >RIV/61389005:_____/22:00552559 - isvavai.cz</a>
Alternative codes found
RIV/62690094:18470/22:50018511
Result on the web
<a href="https://doi.org/10.1016/j.jfa.2021.109252" target="_blank" >https://doi.org/10.1016/j.jfa.2021.109252</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2021.109252" target="_blank" >10.1016/j.jfa.2021.109252</a>
Alternative languages
Result language
angličtina
Original language name
Singular Schrodinger operators with prescribed spectral properties
Original language description
This paper deals with singular Schrodinger operators of the formnn-d(2)/dx(2) + Sigma(k is an element of Z) gamma(k)delta(. - z(k)), gamma(k) is an element of R,nnin L-2 (l(-), l(+)), where delta(. - z(k)) is the Dirac delta-function supported at z(k) is an element of (l(-), l(+)) and (l(-), l(+)) is a bounded interval. It will be shown that the interaction strengths gamma(k) and the points z(k) can be chosen in such a way that the essential spectrum and a bounded part of the discrete spectrum of this self-adjoint operator coincide with prescribed sets on the real line.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
1096-0783
Volume of the periodical
282
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
49
Pages from-to
109252
UT code for WoS article
000709435800001
EID of the result in the Scopus database
2-s2.0-85117167481