All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On spectral asymptotic of quasi-exactly solvable quartic potential

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00552561" target="_blank" >RIV/61389005:_____/22:00552561 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s13324-021-00612-2" target="_blank" >https://doi.org/10.1007/s13324-021-00612-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13324-021-00612-2" target="_blank" >10.1007/s13324-021-00612-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On spectral asymptotic of quasi-exactly solvable quartic potential

  • Original language description

    Motivated by the earlier results of Masoero and De Benedetti (Nonlinearity 23:2501, 2010) and Shapiro et al. (Commun Math Phys 311(2):277-300, 2012), we discuss below the asymptotic of the solvable part of the spectrum for the quasi-exactly solvable quartic oscillator. In particular, we formulate a conjecture on the coincidence of the asymptotic shape of the level crossings of the latter oscillator with the asymptotic shape of zeros of the Yablonskii-Vorob'ev polynomials. Further we present a numerical study of the spectral monodromy for the oscillator in question.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analysis and Mathematical Physics

  • ISSN

    1664-2368

  • e-ISSN

    1664-235X

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    35

  • Pages from-to

    2

  • UT code for WoS article

    000713611700002

  • EID of the result in the Scopus database

    2-s2.0-85118541511