Soft quantum waveguides in three dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00557578" target="_blank" >RIV/61389005:_____/22:00557578 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/22:00364197
Result on the web
<a href="https://doi.org/10.1063/5.0069284" target="_blank" >https://doi.org/10.1063/5.0069284</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0069284" target="_blank" >10.1063/5.0069284</a>
Alternative languages
Result language
angličtina
Original language name
Soft quantum waveguides in three dimensions
Original language description
We discuss a three-dimensional soft quantum waveguide, in other words, Schrodinger operator in R-3 with an attractive potential supported by an infinite tube and by keeping its transverse profile fixed. We show that if the tube is asymptotically straight, the distance between its ends is unbounded, and its twist satisfies the so-called Tang condition, the essential spectrum is not affected by smooth bends. Furthermore, we derive a sufficient condition, expressed in terms of the tube geometry, for the discrete spectrum of such an operator to be nonempty.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
63
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
042103
UT code for WoS article
000792636200006
EID of the result in the Scopus database
2-s2.0-85129180950