All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00559786" target="_blank" >RIV/61389005:_____/22:00559786 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevD.105.072004" target="_blank" >https://doi.org/10.1103/PhysRevD.105.072004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.105.072004" target="_blank" >10.1103/PhysRevD.105.072004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

  • Original language description

    We present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76 x 10(6) tritium ss-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E-0 = 18.57 keV. We consider the 3 nu + 1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m(4)(2) less than or similar to 1600 eV(2) and active-to-sterile mixing |U-e4|(2) greater than or similar to 6 x 10(-3). As no sterile-neutrino signal was observed, we provide improved exclusion contours on m(4)(2) and |U-e4|(2) at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Delta m(41)(2) solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Delta m(41)(2) are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Delta m(41)(2) through a robust spectral shape analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/LTT19005" target="_blank" >LTT19005: Czech Participation at the International Experiment KATRIN</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

    2470-0029

  • Volume of the periodical

    105

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    072004

  • UT code for WoS article

    000823543000001

  • EID of the result in the Scopus database

    2-s2.0-85129379759