Displaced Harmonic Oscillator V ∼ min [(x + d)2, (x − d)2] as a Benchmark Double-Well Quantum Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00563835" target="_blank" >RIV/61389005:_____/22:00563835 - isvavai.cz</a>
Alternative codes found
RIV/62690094:18470/22:50021178
Result on the web
<a href="https://doi.org/10.3390/quantum4030022" target="_blank" >https://doi.org/10.3390/quantum4030022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/quantum4030022" target="_blank" >10.3390/quantum4030022</a>
Alternative languages
Result language
angličtina
Original language name
Displaced Harmonic Oscillator V ∼ min [(x + d)2, (x − d)2] as a Benchmark Double-Well Quantum Model
Original language description
For the displaced harmonic double-well oscillator, the existence of exact polynomial bound states at certain displacements (Formula presented.) is revealed. The N-plets of these quasi-exactly solvable (QES) states are constructed in closed form. For non-QES states, the Schrödinger equation can still be considered “non-polynomially exactly solvable” (NES) because the exact left and right parts of the wave function (proportional to confluent hypergeometric function) just have to be matched in the origin.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quantum Reports
ISSN
2624-960X
e-ISSN
2624-960X
Volume of the periodical
4
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
309-323
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85138670174