All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Monitoring the precipitation of the hardening phase in the new VDM® Alloy 780 by in-situ high-temperature small-angle neutron scattering, neutron diffraction and complementary microscopy techniques

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00564333" target="_blank" >RIV/61389005:_____/22:00564333 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jallcom.2022.167203" target="_blank" >https://doi.org/10.1016/j.jallcom.2022.167203</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2022.167203" target="_blank" >10.1016/j.jallcom.2022.167203</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Monitoring the precipitation of the hardening phase in the new VDM® Alloy 780 by in-situ high-temperature small-angle neutron scattering, neutron diffraction and complementary microscopy techniques

  • Original language description

    The hardening phase precipitation process plays an important role in the development of new Ni-base superalloys. In the present work, we apply a powerful combination of complementary characterization techniques to characterize in-situ the gamma' precipitation in the new VDM (R) Alloy 780. During the whole heat treatment process, in-situ time-of-flight (TOF) neutron diffraction (ND) unambiguously identified the gamma' phase as well as its weight fraction and the misfit with the matrix while in-situ small-angle neutron scattering (SANS) provided precise precipitates' size analysis. Atom probe tomography (APT) and scanning electron microscopy (SEM) provided detailed microstructural characterization and chemical composition of the phases necessary for a proper neutron scattering data evaluation. This contribution reveals more de-tailed information on the nucleation, growth, and Ostwald ripening processes starting from the early precipitation stage in bulk samples using the complementary microstructure investigation methods. The nucleation and growth kinetics of precipitates at 720 degrees C depend on heating rates and the size distribution obtained in the pre-heating history of the sample. A subsequent heat treatment step at 620 degrees C, typically used in Ni-base superalloys, does not lead to similar progressive precipitation or growth. The expected matrix-diffusion-controlled Ostwald ripening process of the gamma' precipitates was in-situ monitored by SANS on a full precipitation hardened sample at expected operating temperatures (750 degrees C) showing slower coarsening kinetics than other reported Ni-based superalloys.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Alloys and Compounds

  • ISSN

    0925-8388

  • e-ISSN

    1873-4669

  • Volume of the periodical

    928

  • Issue of the periodical within the volume

    DEC

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    167203

  • UT code for WoS article

    000879552400003

  • EID of the result in the Scopus database

    2-s2.0-85132282453