All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral isoperimetric inequalities for Robin Laplacians on 2-manifolds and unbounded cones

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00566027" target="_blank" >RIV/61389005:_____/22:00566027 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4171/JST/416" target="_blank" >https://doi.org/10.4171/JST/416</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/JST/416" target="_blank" >10.4171/JST/416</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral isoperimetric inequalities for Robin Laplacians on 2-manifolds and unbounded cones

  • Original language description

    We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of manifolds with the Gauss curvature bounded from above by a constant K-o >= 0 and under the constraint of fixed perimeter, the geodesic disk of constant curvature K-o maximizes the lowest Robin eigenvalue. In the same geometric setting, it is proved that the spectral isoperimetric inequality holds for the lowest eigenvalue of the Dirichlet-to-Neumann operator. Finally, we adapt our methods to Robin Laplacians acting on unbounded three-dimensional cones to show that, under a constraint of fixed perimeter of the cross-section, the lowest Robin eigenvalue is maximized by the circular cone.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Spectral Theory

  • ISSN

    1664-039X

  • e-ISSN

    1664-0403

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    24

  • Pages from-to

    683-706

  • UT code for WoS article

    000896757900012

  • EID of the result in the Scopus database

    2-s2.0-85140208908