Searching for jet quenching effect using high-multiplicity inclusive jet and hadron-jet semi-inclusive jet in pp collisions with ALICE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00570483" target="_blank" >RIV/61389005:_____/23:00570483 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.22323/1.414.0459" target="_blank" >https://doi.org/10.22323/1.414.0459</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22323/1.414.0459" target="_blank" >10.22323/1.414.0459</a>
Alternative languages
Result language
angličtina
Original language name
Searching for jet quenching effect using high-multiplicity inclusive jet and hadron-jet semi-inclusive jet in pp collisions with ALICE
Original language description
Several unforeseen collective phenomena have been observed in high-multiplicity small collision systems that resemble the well-established signatures of the quark-gluon plasma (QGP) formation in heavy-ion collisions. However, jet quenching effects have not been observed in small collision systems. Quantification or setting limits on the magnitude of jet quenching in small systems is essential for understanding the limits of the QGP formation. This contribution to the proceedings presents the outcomes of a search for jet quenching effects performed by the ALICE collaboration in pp collisions at √s = 13 TeV as a function of charged-particle multiplicity, measured in the forward rapidity. Two jet observables are studied: inclusive pT-differential jet cross section, and the semi-inclusive yield of jets recoiling from a high-pT trigger-hadron. Jets are reconstructed from charged-particle tracks using the anti-kT algorithm with resolution parameter R in the range 0.2-0.6. To search for jet quenching effects, both analyses compare jet yields measured in different multiplicity intervals. The analysis of inclusive jets reveals that the rise of event activity leads to an increase in jet production with a weak impact on the spectra slope for high-pT jets. In the semi-inclusive analysis, the acoplanarity distribution of recoil jets measured in high-multiplicity events exhibits a substantial suppression and broadening when compared to the corresponding spectrum obtained from minimum-bias events. These peculiar features are also seen in pp events simulated by the PYTHIA 8 Monte Carlo event generator. Further studies of the PYTHIA 8 data suggest that the observed suppression and broadening arise from a bias posed by the ALICE high-multiplicity trigger. This bias leads to a growth of the probability to measure high-pT recoil jets in the acceptance of the forward V0 detector. Furthermore, the high-multiplicity trigger biases toward final states with multi-jet topology.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10304 - Nuclear physics
Result continuities
Project
<a href="/en/project/LTT17018" target="_blank" >LTT17018: Getting new knowledge of the microworld using the CERN infrastructure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Science
ISBN
—
ISSN
1824-8039
e-ISSN
—
Number of pages
6
Pages from-to
459
Publisher name
Sissa Medilab srl
Place of publication
Trieste
Event location
Bologna
Event date
Jul 6, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—