All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Searching for jet quenching effect using high-multiplicity inclusive jet and hadron-jet semi-inclusive jet in pp collisions with ALICE

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00570483" target="_blank" >RIV/61389005:_____/23:00570483 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.22323/1.414.0459" target="_blank" >https://doi.org/10.22323/1.414.0459</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22323/1.414.0459" target="_blank" >10.22323/1.414.0459</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Searching for jet quenching effect using high-multiplicity inclusive jet and hadron-jet semi-inclusive jet in pp collisions with ALICE

  • Original language description

    Several unforeseen collective phenomena have been observed in high-multiplicity small collision systems that resemble the well-established signatures of the quark-gluon plasma (QGP) formation in heavy-ion collisions. However, jet quenching effects have not been observed in small collision systems. Quantification or setting limits on the magnitude of jet quenching in small systems is essential for understanding the limits of the QGP formation. This contribution to the proceedings presents the outcomes of a search for jet quenching effects performed by the ALICE collaboration in pp collisions at √s = 13 TeV as a function of charged-particle multiplicity, measured in the forward rapidity. Two jet observables are studied: inclusive pT-differential jet cross section, and the semi-inclusive yield of jets recoiling from a high-pT trigger-hadron. Jets are reconstructed from charged-particle tracks using the anti-kT algorithm with resolution parameter R in the range 0.2-0.6. To search for jet quenching effects, both analyses compare jet yields measured in different multiplicity intervals. The analysis of inclusive jets reveals that the rise of event activity leads to an increase in jet production with a weak impact on the spectra slope for high-pT jets. In the semi-inclusive analysis, the acoplanarity distribution of recoil jets measured in high-multiplicity events exhibits a substantial suppression and broadening when compared to the corresponding spectrum obtained from minimum-bias events. These peculiar features are also seen in pp events simulated by the PYTHIA 8 Monte Carlo event generator. Further studies of the PYTHIA 8 data suggest that the observed suppression and broadening arise from a bias posed by the ALICE high-multiplicity trigger. This bias leads to a growth of the probability to measure high-pT recoil jets in the acceptance of the forward V0 detector. Furthermore, the high-multiplicity trigger biases toward final states with multi-jet topology.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10304 - Nuclear physics

Result continuities

  • Project

    <a href="/en/project/LTT17018" target="_blank" >LTT17018: Getting new knowledge of the microworld using the CERN infrastructure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of Science

  • ISBN

  • ISSN

    1824-8039

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    459

  • Publisher name

    Sissa Medilab srl

  • Place of publication

    Trieste

  • Event location

    Bologna

  • Event date

    Jul 6, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article