Composite Quantum Coriolis Forces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00571103" target="_blank" >RIV/61389005:_____/23:00571103 - isvavai.cz</a>
Alternative codes found
RIV/62690094:18470/23:50020910
Result on the web
<a href="https://doi.org/10.3390/math11061375" target="_blank" >https://doi.org/10.3390/math11061375</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11061375" target="_blank" >10.3390/math11061375</a>
Alternative languages
Result language
angličtina
Original language name
Composite Quantum Coriolis Forces
Original language description
In a consistent quantum theory known as 'non-Hermitian interaction picture' (NIP), the standard quantum Coriolis operator S(t) emerges whenever the observables of a unitary system are given in their quasi-Hermitian and non-stationary rather than 'usual' representations. With S(t) needed, in NIP, in both the Schrodinger-like and Heisenberg-like dynamical evolution equations we show that another, amended and potentially simplified theory can be based on an auxiliary N-term factorization of the Dyson's Hermitization map O(t). The knowledge of this factorization is shown to lead to a multiplet of alternative eligible Coriolis forces S-n(t) with n=0,1, horizontal ellipsis ,N. The related formulae for the measurable predictions constitute a new formalism refered to as 'factorization-based non-Hermitian interaction picture' (FNIP). The conventional NIP formalism (where N=1) becomes complemented by an (N-1)-plet of its innovative 'hybrid' alternatives. Some of the respective ad hoc adaptations of observables may result in an optimal representation of quantum dynamics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Volume of the periodical
11
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
1375
UT code for WoS article
000960560600001
EID of the result in the Scopus database
2-s2.0-85151352163