All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnetic Neumann Laplacian on a domain with a hole

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00582311" target="_blank" >RIV/61389005:_____/23:00582311 - isvavai.cz</a>

  • Alternative codes found

    RIV/61988987:17310/23:A2402KPH

  • Result on the web

    <a href="https://doi.org/10.1016/S0034-4877(23)00079-4" target="_blank" >https://doi.org/10.1016/S0034-4877(23)00079-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/S0034-4877(23)00079-4" target="_blank" >10.1016/S0034-4877(23)00079-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnetic Neumann Laplacian on a domain with a hole

  • Original language description

    In this article, we study the magnetic Neumann Laplacian on a domain with a small hole. Our attention is focused on the description of holes, which do not change the spectrum drastically. Moreover, we show that the spectrum of the magnetic Neumann Laplacian converges in the sense of the Hausdorff distance to the spectrum of the original operator defined on the unperturbed domain.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Reports on Mathematical Physics

  • ISSN

    0034-4877

  • e-ISSN

    1879-0674

  • Volume of the periodical

    92

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    259-278

  • UT code for WoS article

    001185517200001

  • EID of the result in the Scopus database

    2-s2.0-85181668844