All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

How can we simulate ionizing radiation at aviation altitudes from TGFs?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00585380" target="_blank" >RIV/61389005:_____/24:00585380 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1051/epjconf/202429209001" target="_blank" >https://doi.org/10.1051/epjconf/202429209001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/epjconf/202429209001" target="_blank" >10.1051/epjconf/202429209001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    How can we simulate ionizing radiation at aviation altitudes from TGFs?

  • Original language description

    So-called thunderclouds, which are large dark clouds that are able to generate thunder and lightning, can act as natural particle accelerators, producing complex high-energy phenomena such as terrestrial gamma-ray flashes (TGFs) and gamma-ray glows. These events are often described through the mechanism of relativistic runaway electron avalanches (RREAs), cascades of high-energy electrons accelerated by atmospheric electric fields. Since the energies of the RREAs are up to several tens of MeV, they can also trigger nuclear reactions with atoms of the air and in the soil while entering the ground. Although these phenomena are intriguing, their lack of precise measurement and still not completely understood origins pose a significant challenge for assessing their impact on aviation safety. This paper introduces the project Research Centre of Cosmic Rays and Radiation Events in Atmosphere (CRREAT), aimed at providing measurements of TGFs, thunderstorm ground enhancements (TGEs), and other ionizing radiation phenomena during thunderstorms, as well as at aviation altitudes, stratosphere, and low Earth orbits (LEO). The paper argues that without accurate data on the origins and physical characteristics of TGEs and TGFs, it is impossible to reliably simulate their impact on aircraft crews and passengers. The paper also mentions how the general-purpose 3D Monte Carlo (MC) code PHITS can be used for future simulations and comparisons with measurements related to ionizing radiation phenomena in the atmosphere.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000481" target="_blank" >EF15_003/0000481: Research Center of Cosmic Rays and Radiation Events in the Atmosphere</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    EPJ Web of Conferences

  • ISBN

  • ISSN

    2100-014X

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    09001

  • Publisher name

    E D P Science

  • Place of publication

    Les Ulis

  • Event location

    Villa Monastero

  • Event date

    Jun 11, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001191093600036