Isoperimetric inequalities for inner parallel curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00600555" target="_blank" >RIV/61389005:_____/24:00600555 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4171/JST/534" target="_blank" >https://doi.org/10.4171/JST/534</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JST/534" target="_blank" >10.4171/JST/534</a>
Alternative languages
Result language
angličtina
Original language name
Isoperimetric inequalities for inner parallel curves
Original language description
We prove weighted isoperimetric inequalities for smooth, bounded, and simplyconnected domains. More precisely, we show that the moment of inertia of inner parallel curves for domains with fixed perimeter attains its maximum for a disk. This inequality, which was previously only known for convex domains, allows us to extend an isoperimetric inequality for the magnetic Robin Laplacian to non-convex centrally symmetric domains. Furthermore, we extend our isoperimetric inequality for moments of inertia, which are second moments, to p-th moments for all p smaller than or equal to two. We also show that the disk is a strict local maximiser in the nearly circular, centrally symmetric case for all p strictly less than three, and that the inequality fails for all p strictly bigger than three.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Spectral Theory
ISSN
1664-039X
e-ISSN
1664-0403
Volume of the periodical
14
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
1537-1562
UT code for WoS article
001341973300010
EID of the result in the Scopus database
2-s2.0-85208238669