Geometry Effects in Quantum Dot Families
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00617185" target="_blank" >RIV/61389005:_____/24:00617185 - isvavai.cz</a>
Result on the web
<a href="http://yokohamapublishers.jp/online2/oppafa/vol9/p1065.html" target="_blank" >http://yokohamapublishers.jp/online2/oppafa/vol9/p1065.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Geometry Effects in Quantum Dot Families
Original language description
We consider Schrödinger operators in L2(Rν), ν = 2, 3, with the interaction in the form on an array of potential wells, each on them having rotational symmetry, arranged along a curve Γ. We prove that if Γ is a bend or deformation of a line, being straight outside a compact, and the wells have the same arcwise distances, such an operator has a nonempty discrete spectrum. It is also shown that if Γ is a circle, the principal eigenvalue is maximized by the arrangement in which the wells have the same angular distances. Some conjectures and open problems are also mentioned.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pure and Applied Functional Analysis
ISSN
2189-3764
e-ISSN
2189-3764
Volume of the periodical
9
Issue of the periodical within the volume
4
Country of publishing house
JP - JAPAN
Number of pages
16
Pages from-to
1065-1080
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85208415482