Surface coating affects behavior of metallic nanoparticles in a biological environment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F16%3A00456625" target="_blank" >RIV/61389013:_____/16:00456625 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3762/bjnano.7.23" target="_blank" >http://dx.doi.org/10.3762/bjnano.7.23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3762/bjnano.7.23" target="_blank" >10.3762/bjnano.7.23</a>
Alternative languages
Result language
angličtina
Original language name
Surface coating affects behavior of metallic nanoparticles in a biological environment
Original language description
Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CD - Macromolecular chemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GC16-01128J" target="_blank" >GC16-01128J: Antioxidative magnetic nanoparticles based on natural antioxidants: Nanoparticle-cell interactions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Beilstein Journal of Nanotechnology
ISSN
2190-4286
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
15 Feb
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
246-262
UT code for WoS article
000370031000001
EID of the result in the Scopus database
2-s2.0-84993929604