Missile-type tumor-targeting polymer drug, P-THP, seeks tumors via three different steps based on the EPR effect
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F16%3A00461503" target="_blank" >RIV/61389013:_____/16:00461503 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
—
Original language name
Missile-type tumor-targeting polymer drug, P-THP, seeks tumors via three different steps based on the EPR effect
Original language description
The enhanced permeability and retention (EPR) effect, a tumor-targeting principle of nanomedicine, serves as a standard for tumor-targeted anticancer drug design. There are 3 key issues in ideal EPR-based antitumor drug design: i) stability in blood circulation; ii) tumor-selective accumulation (EPR effect) and efficient release of the active anticancer moiety in tumor tissues; and iii) the active uptake of the active drug into tumor cells. Using these principles, we developed A/-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-conjugated pirarubicin (P-THP), which uses hydrazone bond linkage; it was shown to exhibit prolonged circulation time, thereby resulting in good tumor-selective accumulation. More importantly, the hydrazone bond ensured selective and rapid release of the active drug, pirarubicin (THP), in acidic tumor environments. Further, compared to other anthracycline anticancer drugs (eg, doxorubicin), THP demonstrated more rapid intracellular uptake. Consequently, P-THP showed remarkable antitumor effect with minimal side effects. In a clinical pilot study of a stage IV prostate cancer patient with multiple metastases in the lung and bone, P-THP (50-75 mg administered once every 2-3 weeks) was shown to clear the metastatic nodules in the lung almost completely after 3 treatments where 50-70 mg THP equivalent each was administerd per 70 kg body wt, and bone metastasis disappeared after 6 months. There was no recurrence after 2 years. The patient also retained an excellent quality of life during the treatment without any apparent side effects. Thus, we propose the clinical development of P-THP as an EPR-based tumor-targeted anticancer drug.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CD - Macromolecular chemistry
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Japanese Journal of Cancer and Chemotherapy
ISSN
0385-0684
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
5
Country of publishing house
JP - JAPAN
Number of pages
9
Pages from-to
549-557
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84982243144