All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strong synergistic effects in PLA/PCL blends: impact of PLA matrix viscosity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00470664" target="_blank" >RIV/61389013:_____/17:00470664 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jmbbm.2017.01.015" target="_blank" >http://dx.doi.org/10.1016/j.jmbbm.2017.01.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmbbm.2017.01.015" target="_blank" >10.1016/j.jmbbm.2017.01.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strong synergistic effects in PLA/PCL blends: impact of PLA matrix viscosity

  • Original language description

    Blends of two biodegradable polymers, poly(lactic acid) (PLA) and poly(epsilon-caprolactone) (PCL), with strong synergistic improvement in mechanical performance were prepared by melt-mixing using the optimized composition (80/20) and the optimized preparation procedure (a melt-mixing followed by a compression molding) according to our previous study. Three different PLA polymers were employed, whose viscosity decreased in the following order: PLC approximately equal to PLA1 > PLA2 > PLA3. The blends with the highest viscosity matrix (PLA1/PCL) exhibited the smallest PCL particles (d~0.6 mu m), an elastic-plastic stable fracture (as determined from instrumented impact testing) and the strongest synergistic improvement in toughness (>16× with respect to pure PLA, exceeding even the toughness of pure PCL). According to the available literature, this was the highest toughness improvement in non-compatiblized PLA/PCL blends ever achieved. The decrease in the matrix viscosity resulted in an increase in the average PCL particle size and a dramatic decrease in the overall toughness: the completely stable fracture (for PLA1/PCL) changed to the stable fracture followed by unstable crack propagation (for PLA2/PCL) and finally to the completely brittle fracture (for PLA3/PCL). The stiffness of all blends remained at well acceptable level, slightly above the theoretical predictions based on the equivalent box model. Despite several previous studies, the results confirmed that PLA and PCL could behave as compatible polymers, but the final PLA/PCL toughness is extremely sensitive to the PCL particle size distribution, which is influenced by both processing conditions and PLA viscosity. PLA/PCL blends with high stiffness (due to PLA) and toughness (due to PCL) are very promising materials for medical applications, namely for the bone tissue engineering.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Mechanical Behavior of Biomedical Materials

  • ISSN

    1751-6161

  • e-ISSN

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    229-241

  • UT code for WoS article

    000400199600025

  • EID of the result in the Scopus database

    2-s2.0-85009401615