All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00470668" target="_blank" >RIV/61389013:_____/17:00470668 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00289-016-1723-2" target="_blank" >http://dx.doi.org/10.1007/s00289-016-1723-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00289-016-1723-2" target="_blank" >10.1007/s00289-016-1723-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles

  • Original language description

    Crystallization kinetics of polycaprolactone (PCL) filled with TiO2-based particles (TiX) was shown to depend on the TiX particle type and concentration, which were associated with a slight polymer matrix degradation. The partially degraded, shorter, and more mobile polymer chains increased the overall crystallization rate at the initial stage of crystallization, while at the later stages, the non-nucleating TiX particles acted as a sterical hindrance, slowing down the crystallization process. The PCL/TiX composites were prepared by melt-mixing and contained 2.5 and 5 wt% of the filler. The investigated TiX particles included isometric anatase microparticles (mTiO2) and titanate nanotubes with high-aspect ratio (TiNT). Light and electron microscopy showed very homogeneous dispersion of the mTiO2 particles in the PCL matrix, while the TiNT formed large agglomerates. In situ polarized light microscopy displayed faster isothermal crystallization of all PCL/TiX composites, but the micrographs indicated that the TiX particles did not act as nucleation centres. Isothermal DSC experiments, evaluated in terms of Avrami theory, confirmed the PLM results and showed that the overall rate of isothermal crystallization increased in the following order: PCL <PCL/TiNT <PCL/mTiO2. Non-isothermal DSC and rheological measurements revealed the correlation between the crystallization rate and the polymer matrix degradation—the well-dispersed mTiO2 particles with high specific surface caused the highest PCL degradation and, consequently, the earliest start of non-isothermal crystallization as well as the fastest isothermal crystallization. Microindentation hardness measurements confirmed that the partial degradation of the polymer matrix did not have a significant impact on the mechanical performance of PCL/mTiO2 composites.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymer Bulletin

  • ISSN

    0170-0839

  • e-ISSN

  • Volume of the periodical

    74

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

    445-464

  • UT code for WoS article

    000393033100009

  • EID of the result in the Scopus database

    2-s2.0-84974777662