Development of quinoxaline based polymers for photovoltaic applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00471742" target="_blank" >RIV/61389013:_____/17:00471742 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1039/C6TC05381E" target="_blank" >http://dx.doi.org/10.1039/C6TC05381E</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/C6TC05381E" target="_blank" >10.1039/C6TC05381E</a>
Alternative languages
Result language
angličtina
Original language name
Development of quinoxaline based polymers for photovoltaic applications
Original language description
Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) structure, i.e. a blend of a p-type conjugated polymer with an n-type semiconductor acceptor, have made rapid progress over the past decade. In comparison with inorganic semiconductor solar cells, PSCs have the advantages of low cost, light weight, solution processability and good mechanical flexibility. In the last few years, various classes of electron-donating polymers have been reported for PSCs. Among them, quinoxaline (Qx) and its derivatives have been widely used as building blocks for optoelectronic applications because they can be easily modified by varying the side chains, such as alkyl chains, conjugated aromatic rings, functional groups, etc. Recently, a power conversion efficiency (PCE) of over 11% was achieved for PSCs with Qx-based polymers. This PCE is among the best for PSCs, and it suggests that Qx-based polymers have great potential for highly efficient PSCs. In this article, we review the recent advances in the design and synthesis of such Qx-based conjugated polymers for photovoltaic applications. Particular attention is paid to the chemical structures of the polymers including flexible chains, conjugated side chains, functional groups, Qx derivatives and the effect of the molecular structure on device performance parameters. We believe that further development of Qx-based polymers will lead to a PCE >12% in the near future.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA13-26542S" target="_blank" >GA13-26542S: Advanced polymers for photonics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Materials Chemistry C
ISSN
2050-7526
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
1858-1879
UT code for WoS article
000396048600001
EID of the result in the Scopus database
2-s2.0-85014053047