All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ionic liquid-silica precursors via solvent-free sol-gel process and their application in epoxy-amine network: a theoretical/experimental study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00474629" target="_blank" >RIV/61389013:_____/17:00474629 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acsami.7b02631" target="_blank" >http://dx.doi.org/10.1021/acsami.7b02631</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.7b02631" target="_blank" >10.1021/acsami.7b02631</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ionic liquid-silica precursors via solvent-free sol-gel process and their application in epoxy-amine network: a theoretical/experimental study

  • Original language description

    This work describes the solvent-free sol–gel synthesis of epoxy-functionalized silica-based precursors in the presence of 1-butyl-3-methylimidazolium-based ionic liquids (ILs) containing different anions: chloride (Cl–) and methanesulfonate (MeSO3–). The IL-driven sol–gel mechanisms were investigated in detail using experimental characterizations (29Si NMR and ATR FTIR spectroscopy) and a theoretical computational method based on density functional theory (DFT). We observed complex IL influence on both hydrolysis and condensation steps, involving especially H-bonding and Coulomb coupling stabilization of the process intermediates. The obtained IL–silica precursors and their further xerogels were widely characterized (rheology measurements, MALDI TOF, 29Si NMR, ATR FTIR, and DFT simulation), which allowed observation of their precise silica structures and established their most energetically favorable conformations. The detected silica structures were dependent on the IL type and varied from highly condensed 3D cage-like to branched ladder-like and cyclic ones. The application of prepared IL–silica precursors as reinforcing additives into the epoxy–amine network led to an improvement in the organic/inorganic interphase interactions through chemical and physical bonding. Uniform and well-dispersed silica aggregates, in the size of approximately 30 nm, were formed when <= 6.8 wt % of each IL–silica precursor was applied into the epoxy–amine network. The use of imidazolium-based ILs contributed to a significant improvement in thermomechanical properties of hybrids and reduced their UV absorption ability compared to that of the reference matrix. All hybrids exhibited an increase in energy to break (up to approximately 53%), elongation at break (up to approximately 43%), shear storage modulus in the rubbery region (up to 4 times), and thermo-oxidative stability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials and Interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    16474-16487

  • UT code for WoS article

    000401782500062

  • EID of the result in the Scopus database

    2-s2.0-85019596517