All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Polyhedral oligomeric butyl stannoxane cages (Sn-POSS) as oxidation-activated linear repairing units or crosslinking nano-building blocks, depending on structure of the polymer matrix

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00475150" target="_blank" >RIV/61389013:_____/17:00475150 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.polymdegradstab.2017.05.019" target="_blank" >http://dx.doi.org/10.1016/j.polymdegradstab.2017.05.019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.polymdegradstab.2017.05.019" target="_blank" >10.1016/j.polymdegradstab.2017.05.019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Polyhedral oligomeric butyl stannoxane cages (Sn-POSS) as oxidation-activated linear repairing units or crosslinking nano-building blocks, depending on structure of the polymer matrix

  • Original language description

    The chemically active heavier POSS homolog, the n-butylstannoxane dodacamer cage, shows unusual stabilizing properties during an oxidizing treatment of organic-inorganic hybrid polymer materials, into which it is incorporated as nano-building block. In this work, we dispersed Sn_POSS in several matrixes, which mainly had all-carbon backbones (based on polystyrene, polyacrylates and polyethers). Sn_POSS concentration was varied, and it was incorporated either as non-functional cage (blending), or via covalent bonding as a large co-monomer. The stannoxane cages' reactivity in the different matrixes was compared, and the authors propose matrix-dependent mechanisms of the stabilizing effect of Sn_POSS, which make possible to predict the behavior of this cage in different polymers, if their degradation mechanism and eventual reactivity of pendant groups can be estimated. Under oxidizing conditions, the studied matrixes yielded either pendant radicals on (at first) intact chains, or terminal radicals on ends of fragmented chains, depending on the exact polymer structure. The stannoxane cages, if present, subsequently underwent either crosslinking, or chain-repair reactions (fragmented chains re-connection) with the radical sites of the matrix. Another reaction type, which yielded additional crosslinking in the hybrids, was observed in case that the polymer matrix contained suitable pendant functional groups, which were able to react with Sn_POSS after activation either by heat or by oxidation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA17-05007S" target="_blank" >GA17-05007S: Interplay between chemical and plasmon-induced processes in plasmonic metal nanoparticles-molecules hybrid systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymer Degradation and Stability

  • ISSN

    0141-3910

  • e-ISSN

  • Volume of the periodical

    142

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    1-20

  • UT code for WoS article

    000408183300001

  • EID of the result in the Scopus database

    2-s2.0-85020036460