All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00475193" target="_blank" >RIV/61389013:_____/17:00475193 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11110/17:10361465

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.eurpolymj.2017.05.036" target="_blank" >http://dx.doi.org/10.1016/j.eurpolymj.2017.05.036</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eurpolymj.2017.05.036" target="_blank" >10.1016/j.eurpolymj.2017.05.036</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy

  • Original language description

    A series of well-defined methoxy-poly(ethylene glycol)-block-polylactic acid (mPEG-b-PLA) diblock copolymers were successfully synthesized, characterized and used for the construction of anticancer nanoparticle delivery system. Nanoparticles (NPs) based on these polymers were prepared by employing the nanoprecipitation method, and they were non-covalently loaded with curcumin, curcumin-bortezomib model or curcumin-bortezomib complex (curc-BTZ). Both curcumin and bortezomib are rather hydrophobic and poorly water-soluble potent anticancer drugs with synergic effects forming together a pH-sensitive complex, stable at pH of blood plasma, yet hydrolytically labile at mildly acidic milieu typical for endosomes and interstitial space in solid tumors. PEG-Curcumin-loaded and curc-BTZ-loaded NPs with 100–150 nm size showed the maximum cellular uptake by HeLa, MCF-7 and MDA-MB 231 cells after 3 h. The NPs were located in the cytoplasm of the cells but not inside the nucleus. Bare NPs did not induce any cytotoxicity in the same cell lines in in vitro experiments, even at very high concentrations (up to 800 µg/mL). NPs containing curcumin were cytotoxic with an IC50 of 25 µg/mL, which corresponds to 2.5 µg/mL of loaded curcumin. These results show that the efficacy of curcumin is significantly enhanced when using the NPs as carriers. The efficiency was further augmented through the complexation of BTZ with curcumin. When using free curc-BTZ-complex, MCF-7 cells were more sensitive to the free complex 18.8 nM (IC50) than MDA-MB-231 cells 122.4 nM (IC50). Nanoparticle formulations with these drugs caused significant cytotoxicity with 7.5 nM (IC50) and 59.2 nM (IC50) after 24 h of the treatment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Polymer Journal

  • ISSN

    0014-3057

  • e-ISSN

  • Volume of the periodical

    93

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    116-131

  • UT code for WoS article

    000407186200012

  • EID of the result in the Scopus database

    2-s2.0-85019995345