All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prooxidant activity of phenolic stabilizers in polyolefins during accelerated photooxidation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F19%3A00505869" target="_blank" >RIV/61389013:_____/19:00505869 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0141391019302162?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0141391019302162?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.polymdegradstab.2019.06.013" target="_blank" >10.1016/j.polymdegradstab.2019.06.013</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prooxidant activity of phenolic stabilizers in polyolefins during accelerated photooxidation

  • Original language description

    Polymer plaques made of high density polyethylene (HDPE) and of two types of cycloolefin copolymer (COC) differing in glass transition temperature, were stabilized with 0.2 or 1.0 wt % of natural (α-tocopherol) or synthetic (Irganox®1010) phenolic stabilizer or hindered amine stabilizer (Tinuvin®770) and aged using accelerated weathering technique (WOM). The efficiency of the phenolic stabilizers was compared among themselves and with well-established Tinuvin®770. Concentration profiles of radicals generated inside polymer plaques during WOM exposure were determined by ESRI, profiles of oxidation products and crystallinity inside the HDPE plaques were determined by IR microspectroscopy, oxidation products in COC copolymers were identified using ATR, the changes of local mechanical properties of the polymer plaques were characterized using microindentation hardness testing, and their morphology was studied by light and/or scanning electron microscopy. All the techniques evidenced high stability of neat COC against photooxidation processes, whereas neat HDPE exhibited fast photooxidation of the surface layers. Tinuvin®770 was found to provide long term protection to both HDPE and COC against photodegradation. In contrast, the same polymers stabilized with the natural phenolic antioxidant α-tocopherol (the most active component of vitamin E) or synthetic phenolic antioxidant Irganox®1010 exhibited an increase in the surface oxidation in comparison with the neat polymers during WOM exposure, proving prooxidant activity of phenolic stabilizers during WOM exposure in all polymers studied. The prooxidant activity α-tocopherol was stronger in comparison with Irganox®1010. We conclude that neither of the two phenolic stabilizers was able to provide long term protection of the investigated polymers against photooxidation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymer Degradation and Stability

  • ISSN

    0141-3910

  • e-ISSN

  • Volume of the periodical

    166

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    18

  • Pages from-to

    307-324

  • UT code for WoS article

    000480377900031

  • EID of the result in the Scopus database

    2-s2.0-85067608745