All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feasibility of quaternary ammonium and 1,4-diazabicyclo[2.2.2]octane-functionalized anion-exchange membranes for biohydrogen production in microbial electrolysis cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F20%3A00522443" target="_blank" >RIV/61389013:_____/20:00522443 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1567539419307339?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1567539419307339?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bioelechem.2020.107479" target="_blank" >10.1016/j.bioelechem.2020.107479</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feasibility of quaternary ammonium and 1,4-diazabicyclo[2.2.2]octane-functionalized anion-exchange membranes for biohydrogen production in microbial electrolysis cells

  • Original language description

    In this work, two commercialized anion-exchange membranes (AEMs), AMI-7001 and AF49R27, were applied in microbial electrolysis cells (MECs) and compared with a novel AEM (PSEBS CM DBC, functionalized with 1,4-diazabicyclo[2.2.2]octane) to produce biohydrogen. The evaluation regarding the effect of using different AEMs was carried out using simple (acetate) and complex (mixture of acetate, butyrate and propionate to mimic dark fermentation effluent) substrates. The MECs equipped with various AEMs were assessed based on their electrochemical efficiencies, H2 generation capacities and the composition of anodic biofilm communities. pH imbalances, ionic losses and cathodic overpotentials were taken into consideration together with changes to substantial AEM properties (particularly ion-exchange capacity, ionic conductivity, area- and specific resistances) before and after AEMs were applied in the process to describe their potential impact on the behavior of MECs. It was concluded that the MECs which employed the PSEBS CM DBC membrane provided the highest H2 yield and lowest internal losses compared to the two other separators. Therefore, it has the potential to improve MECs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bioelectrochemistry

  • ISSN

    1567-5394

  • e-ISSN

  • Volume of the periodical

    133

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000531827700024

  • EID of the result in the Scopus database

    2-s2.0-85079536938