Macro-, micro- and nanomechanical characterization of crosslinked polymers with very broad range of mechanical properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F20%3A00536180" target="_blank" >RIV/61389013:_____/20:00536180 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-4360/12/12/2951" target="_blank" >https://www.mdpi.com/2073-4360/12/12/2951</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym12122951" target="_blank" >10.3390/polym12122951</a>
Alternative languages
Result language
angličtina
Original language name
Macro-, micro- and nanomechanical characterization of crosslinked polymers with very broad range of mechanical properties
Original language description
This work is focused on the comparison of macro-, micro- and nanomechanical properties of a series of eleven highly homogeneous and chemically very similar polymer networks, consisting of diglycidyl ether of bisphenol A cured with diamine terminated polypropylene oxide. The main objective was to correlate the mechanical properties at multiple length scales, while using very well-defined polymeric materials. By means of synthesis parameters, the glass transition temperature (Tg) of the polymer networks was deliberately varied in a broad range and, as a result, the samples changed their mechanical behavior from very hard and stiff (elastic moduli 4 GPa), through semi-hard and ductile, to very soft and elastic (elastic moduli 0.006 GPa). The mechanical properties were characterized in macroscale (dynamic mechanical analysis, DMA), microscale (quasi-static microindentation hardness testing, MHI) and nanoscale (quasi-static and dynamic nanoindentation hardness testing, NHI). The stiffness-related properties (i.e., storage moduli, indentation moduli and indentation hardness at all length scales) showed strong and statistically significant mutual correlations (all Pearson′s correlation coefficients r > 0.9 and corresponding p-values < 0.001). Moreover, the relations among the stiffness-related properties were approximately linear, in agreement with the theoretical prediction. The viscosity-related properties (i.e., loss moduli, damping factors, indentation creep and elastic work of indentation at all length scales) reflected the stiff-ductile-elastic transitions. The fact that the macro-, micro- and nanomechanical properties exhibited the same trends and similar values indicated that not only dynamic, but also quasi-static indentation can be employed as an alternative to well-established DMA characterization of polymer networks.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymers
ISSN
2073-4360
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
12
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
1-26
UT code for WoS article
000602425800001
EID of the result in the Scopus database
2-s2.0-85097640881