The atomic-level structure of bandgap engineered double perovskite alloys Cs2AgIn1-xFexCl6
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F21%3A00539522" target="_blank" >RIV/61389013:_____/21:00539522 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/SC/D0SC05264G#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/SC/D0SC05264G#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D0SC05264G" target="_blank" >10.1039/D0SC05264G</a>
Alternative languages
Result language
angličtina
Original language name
The atomic-level structure of bandgap engineered double perovskite alloys Cs2AgIn1-xFexCl6
Original language description
Although lead-free halide double perovskites are considered as promising alternatives to lead halide perovskites for optoelectronic applications, state-of-the-art double perovskites are limited by their large bandgap. The doping/alloying strategy, key to bandgap engineering in traditional semiconductors, has also been employed to tune the bandgap of halide double perovskites. However, this strategy has yet to generate new double perovskites with suitable bandgaps for practical applications, partially due to the lack of fundamental understanding of how the doping/alloying affects the atomic-level structure. Here, we take the benchmark double perovskite Cs2AgInCl6 as an example to reveal the atomic-level structure of double perovskite alloys (DPAs) Cs2AgIn1−xFexCl6 (x = 0–1) by employing solid-state nuclear magnetic resonance (ssNMR). The presence of paramagnetic alloying ions (e.g. Fe3+ in this case) in double perovskites makes it possible to investigate the nuclear relaxation times, providing a straightforward approach to understand the distribution of paramagnetic alloying ions. Our results indicate that paramagnetic Fe3+ replaces diamagnetic In3+ in the Cs2AgInCl6 lattice with the formation of [FeCl6]3−·[AgCl6]5− domains, which show different sizes and distribution modes in different alloying ratios. This work provides new insights into the atomic-level structure of bandgap engineered DPAs, which is of critical significance in developing efficient optoelectronic/spintronic devices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
<a href="/en/project/GA19-05259S" target="_blank" >GA19-05259S: Combining advanced ultra-wideline ssNMR spectroscopy with XRPD and Computational Chemistry to study organo-metallic and frameworks materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Science
ISSN
2041-6520
e-ISSN
2041-6539
Volume of the periodical
12
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
1730-1735
UT code for WoS article
000617028900013
EID of the result in the Scopus database
2-s2.0-85101099766