All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

PEG-neridronate-modified NaYF4:Gd3+,Yb3+,Tm3+/NaGdF4 core-shell upconverting nanoparticles for bimodal magnetic resonance/optical luminescence imaging

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F21%3A00543052" target="_blank" >RIV/61389013:_____/21:00543052 - isvavai.cz</a>

  • Alternative codes found

    RIV/00023001:_____/21:00081192 RIV/00216208:11120/21:43921672 RIV/60461373:22340/21:43922107 RIV/46747885:24530/21:00008890

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acsomega.1c01313" target="_blank" >https://pubs.acs.org/doi/10.1021/acsomega.1c01313</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsomega.1c01313" target="_blank" >10.1021/acsomega.1c01313</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    PEG-neridronate-modified NaYF4:Gd3+,Yb3+,Tm3+/NaGdF4 core-shell upconverting nanoparticles for bimodal magnetic resonance/optical luminescence imaging

  • Original language description

    Upconverting nanoparticles are attracting extensive interest as a multimodal imaging tool. In this work, we report on the synthesis and characterization of gadolinium-enriched upconverting nanoparticles for bimodal magnetic resonance and optical luminescence imaging. NaYF4:Gd3+,Yb3+,Tm3+ core upconverting nanoparticles were obtained by a thermal coprecipitation of lanthanide oleate precursors in the presence of oleic acid as a stabilizer. With the aim of improving the upconversion emission and increasing the amount of Gd3+ ions on the nanoparticle surface, a 2.5 nm NaGdF4 shell was grown by the epitaxial layer-by-layer strategy, resulting in the 26 nm core–shell nanoparticles. Both core and core–shell nanoparticles were coated with poly(ethylene glycol) (PEG)-neridronate (PEG-Ner) to have stable and well-dispersed upconverting nanoparticles in a biological medium. FTIR spectroscopy and thermogravimetric analysis indicated the presence of ∼20 wt % of PEG-Ner on the nanoparticle surface. The addition of inert NaGdF4 shell resulted in a total 26-fold enhancement of the emission under 980 nm excitation and also affected the T1 and T2 relaxation times. Both r1 and r2 relaxivities of PEG-Ner-modified nanoparticles were much higher compared to those of non-PEGylated particles, thus manifesting their potential as a diagnostic tool for magnetic resonance imaging. Together with the enhanced luminescence efficiency, upconverting nanoparticles might represent an efficient probe for bimodal in vitro and in vivo imaging of cells in regenerative medicine, drug delivery, and/or photodynamic therapy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/GA19-00676S" target="_blank" >GA19-00676S: Biocompatible surface-engineered upconversion nanoparticles for cancer therapy</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Omega

  • ISSN

    2470-1343

  • e-ISSN

    2470-1343

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    14420-14429

  • UT code for WoS article

    000661452700046

  • EID of the result in the Scopus database

    2-s2.0-85108823448