Stimuli-responsive polypeptide nanogels for trypsin inhibition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F22%3A00558480" target="_blank" >RIV/61389013:_____/22:00558480 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/22:10446610
Result on the web
<a href="https://www.beilstein-journals.org/bjnano/articles/13/45" target="_blank" >https://www.beilstein-journals.org/bjnano/articles/13/45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3762/bjnano.13.45" target="_blank" >10.3762/bjnano.13.45</a>
Alternative languages
Result language
angličtina
Original language name
Stimuli-responsive polypeptide nanogels for trypsin inhibition
Original language description
A new type of hydrophilic, biocompatible, and biodegradable polypeptide nanogel depots loaded with the natural serine protease inhibitor α1-antitrypsin (AAT) was applied for the inhibition of the inflammatory mediator trypsin. Two types of nanogels were prepared from linear synthetic polypeptides based on biocompatible and biodegradable poly[N5-(2-hydroxyethyl)-ʟ-glutamine-ran-N5-propargyl-ʟ-glutamine-ran-N5-(6-aminohexyl)-ʟ-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-ʟ-glutamine] (PHEG-Tyr) or biocompatible Nα-ʟ-lysine-grafted α,β-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran-(2-hydroxyethyl)-ᴅʟ-aspartamide-ran-(2-(4-hydroxyphenyl)ethyl)-ᴅʟ-aspartamide] (Nα-Lys-NG). Both nanogels were prepared by HRP/H2O2-mediated crosslinking in inverse miniemulsions with pH and temperature-stimuli responsive behavior confirmed by dynamic light scattering and zeta potential measurements. The loading capacity of PHEG-Tyr and Nα-Lys-NG nanogels and their release profiles were first optimized with bovine serum albumin. The nanogels were then used for loading and release of AAT. PHEG-Tyr and Nα-Lys-NG nanogels showed different loading capacities for AAT with the maximum (20%) achieved with Nα-Lys-NG nanogel. In both cases, the nanogel depots demonstrated a burst release of AAT during the first 6 h, which could be favorable for quick inhibition of trypsin. A consequent pilot in vitro inhibition study revealed that both PHEG-Tyr and Nα-Lys-NG nanogels loaded with AAT successfully inhibited the enzymatic activity of trypsin. Furthermore, the inhibitory efficiency of the AAT-loaded nanogels was higher than that of only AAT. Interestingly, also non-loaded PHEG-Tyr and Nα-Lys-NG nanogels were shown to effectively inhibit trypsin because they contain suitable amino acids in their structures that effectively block the active site of trypsin.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Beilstein Journal of Nanotechnology
ISSN
2190-4286
e-ISSN
2190-4286
Volume of the periodical
13
Issue of the periodical within the volume
22 Jun
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
538-548
UT code for WoS article
000820226200001
EID of the result in the Scopus database
2-s2.0-85134383301