Phosphorus-containing polymers as sensitive biocompatible probes for 31P magnetic resonance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F23%3A00569669" target="_blank" >RIV/61389013:_____/23:00569669 - isvavai.cz</a>
Alternative codes found
RIV/46747885:24530/23:00012142 RIV/00216208:11110/23:10464441
Result on the web
<a href="https://www.mdpi.com/1420-3049/28/5/2334" target="_blank" >https://www.mdpi.com/1420-3049/28/5/2334</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules28052334" target="_blank" >10.3390/molecules28052334</a>
Alternative languages
Result language
angličtina
Original language name
Phosphorus-containing polymers as sensitive biocompatible probes for 31P magnetic resonance
Original language description
The visualization of organs and tissues using 31P magnetic resonance (MR) imaging represents an immense challenge. This is largely due to the lack of sensitive biocompatible probes required to deliver a high-intensity MR signal that can be distinguished from the natural biological background. Synthetic water-soluble phosphorus-containing polymers appear to be suitable materials for this purpose due to their adjustable chain architecture, low toxicity, and favorable pharmacokinetics. In this work, we carried out a controlled synthesis, and compared the MR properties, of several probes consisting of highly hydrophilic phosphopolymers differing in composition, structure, and molecular weight. Based on our phantom experiments, all probes with a molecular weight of ~3–400 kg·mol−1, including linear polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(ethyl ethylenephosphate) (PEEP), and poly[bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]phosphazene (PMEEEP) as well as star-shaped copolymers composed of PMPC arms grafted onto poly(amidoamine) dendrimer (PAMAM-g-PMPC) or cyclotriphosphazene-derived cores (CTP-g-PMPC), were readily detected using a 4.7 T MR scanner. The highest signal-to-noise ratio was achieved by the linear polymers PMPC (210) and PMEEEP (62) followed by the star polymers CTP-g-PMPC (56) and PAMAM-g-PMPC (44). The 31P T1 and T2 relaxation times for these phosphopolymers were also favorable, ranging between 1078 and 2368 and 30 and 171 ms, respectively. We contend that select phosphopolymers are suitable for use as sensitive 31P MR probes for biomedical applications.n
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Molecules
ISSN
1420-3049
e-ISSN
1420-3049
Volume of the periodical
28
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
2334
UT code for WoS article
000948203900001
EID of the result in the Scopus database
2-s2.0-85150206100