All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Temperature- and pH-responsive super-absorbent hydrogel based on grafted cellulose and capable of heavy metal removal from aqueous solutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F23%3A00571875" target="_blank" >RIV/61389013:_____/23:00571875 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2310-2861/9/4/296" target="_blank" >https://www.mdpi.com/2310-2861/9/4/296</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/gels9040296" target="_blank" >10.3390/gels9040296</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Temperature- and pH-responsive super-absorbent hydrogel based on grafted cellulose and capable of heavy metal removal from aqueous solutions

  • Original language description

    In this work, we prepared highly swelling, stimuli-responsive hydrogels capable of the highly efficient adsorption of inorganic pollutants. The hydrogels were based on hydroxypropyl methyl cellulose (HPMC) grafted with acrylamide (AM) and 3-sulfopropyl acrylate (SPA) and were synthesized via the growth (radical polymerization) of the grafted copolymer chains on HPMC, which was activated by radical oxidation. These grafted structures were crosslinked to an infinite network by a small amount of di-vinyl comonomer. HPMC was chosen as a cheap hydrophilic and naturally sourced polymer backbone, while AM and SPA were employed to preferentially bond coordinating and cationic inorganic pollutants, respectively. All the gels displayed a pronounced elastic character, as well as considerably high values of stress at break (several hundred %). The gel with the highest fraction of the ionic comonomer SPA (with an AM/SPA ratio = 0.5) displayed the highest equilibrium swelling ratio (12,100%), the highest volume response to temperature and pH, and the fastest swelling kinetics, but also the lowest modulus. The other gels (with AM/SPA = 1 and 2) displayed several times higher moduli but more modest pH responses and only very modest temperature sensitivity. Cr(VI) adsorption tests indicated that the prepared hydrogels removed this species from water very efficiently: between 90 and 96% in one step. The hydrogels with AM/SPA ratios of 0.5 and 1 appeared to be promising regenerable (via pH) materials for repeated Cr(VI) adsorption.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Gels

  • ISSN

    2310-2861

  • e-ISSN

    2310-2861

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    296

  • UT code for WoS article

    000979279100001

  • EID of the result in the Scopus database

    2-s2.0-85154550943