All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ionic hyper-cross-linked porous polymer networks with achiral and chiral pyridinium-type segments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00585223" target="_blank" >RIV/61389013:_____/24:00585223 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/24:10481004 RIV/60461373:22310/24:43928800 RIV/60461373:22320/24:43928800

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0014305724002325?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0014305724002325?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eurpolymj.2024.112971" target="_blank" >10.1016/j.eurpolymj.2024.112971</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ionic hyper-cross-linked porous polymer networks with achiral and chiral pyridinium-type segments

  • Original language description

    A new type of ionic porous polymer networks (PPNs) is reported containing (i) N-alkyl pyridinium bromide ionic groups and (ii) a hyper-cross-linked scaffold based on polyacetylene (polyene) chains the rigidity of which contributes to the permanent porosity the PPNs. The ionic PPNs were prepared by a combination of chain-growth polymerization of acetylenic monomers and quaternization reactions of pyridine and alkyl bromide moieties. The wide variability of this synthetic concept enabled the preparation of covalently diverse PPNs with ionic groups located either in the pendant groups or in the knots of the networks, as well as the preparation of PPNs with chiral ionic groups. The content of ionic groups in PPNs ranged from 1.5 to 4.2 mmol/g, and the BET area was from 67 to 744 m2/g. The mode of quaternization used (prepolymerization or postpolymerization) controlled the contribution of micropores and mesopores to the porosity of the ionic PPNs. The polyacetylene ionic PPNs were active as heterogeneous organocatalysts (applied without a cocatalyst) for the cycloaddition of CO2 to styrene oxide yielding styrene carbonate as the only product (up to 96 %). PPNs with chiral ionic groups showed potential for enantioselective catalysis of this reaction. The catalytic activity was controlled by the accessibility of pyridinium active centres for the substrate molecules. Ionic PPNs prepared were also efficient in reversible water vapour capturing and releasing (capacity up to 361 mg/g at 298 K and RH = 90 %). Both surface adsorption and capillary condensation of H2O contributed to the water vapour capture on reported PPNs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/GA21-02183S" target="_blank" >GA21-02183S: Porous polymer networks with helically chiral polyacetylene chains for enantioselective applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Polymer Journal

  • ISSN

    0014-3057

  • e-ISSN

    1873-1945

  • Volume of the periodical

    210

  • Issue of the periodical within the volume

    24 April

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    112971

  • UT code for WoS article

    001218502600001

  • EID of the result in the Scopus database

    2-s2.0-85189555022