All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Double-porous polyaniline-based cryogels with carbon nanofibers for supercapacitors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00585476" target="_blank" >RIV/61389013:_____/24:00585476 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/24:10480393 RIV/60461373:22310/24:43931042

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acsaem.4c00120" target="_blank" >https://pubs.acs.org/doi/10.1021/acsaem.4c00120</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsaem.4c00120" target="_blank" >10.1021/acsaem.4c00120</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Double-porous polyaniline-based cryogels with carbon nanofibers for supercapacitors

  • Original language description

    Polyaniline-poly(N-vinylpyrrolidone) cryogels/aerogels with carbon nanofibers (PANI–CNF–PVP) were prepared by oxidative cryopolymerization of aniline in water:isopropanol medium in the presence of various amounts of dispersed carbon nanofibers (CNF, 0.05–2.5 mg mL–1). Scanning electron microscopy showed that all prepared PANI–CNF–PVP and PANI–PVP aerogels have double-porous morphology, which is represented by macropores (5–35 μm), constituting the main three-dimensional network of the materials, and smaller pores (≈200 nm − 3 μm) in the macropore walls. The incorporation of CNF into PANI–CNF–PVP aerogels was visualized by scanning and transmission electron microscopy and additionally supported by X-ray photoelectron spectroscopy. Surface area of the aerogels was found to be ≈13–25 m2 g–1. Based on full decomposition temperatures determined by TGA, PANI–CNF–PVP aerogels had better thermal stability (792 °C, 2.5 mg mL–1 of CNF) compared to PANI–PVP (750 °C). Starting from the lowest used CNF content (0.05 mg mL–1), PANI–CNF–PVP aerogels demonstrated significantly higher gravimetric capacitance (≈3–6 times), compared to PANI–PVP aerogel, reaching 201 F g–1 (1 A g–1, 1 mg mL–1 of CNF), in the three-electrode setup. These data were supported by electrochemical impedance spectroscopy, showing lower charge transfer resistance for PANI–CNF–PVP aerogels, which decreased with an increasing CNF fraction. CNF-containing aerogels also showed enhanced cycling stability. A two-electrode symmetrical supercapacitor was assembled using PANI–CNF–PVP aerogel (1 mg mL–1 CNF) as the active electrode material. The device reached a gravimetric capacitance of 213 F g–1 (0.5 A g–1) with energy and power densities of 30 Wh kg–1 and 1000 W kg–1, respectively, and showed 95% cycling stability after 1000 cycles. The performance of this supercapacitor is comparable or often exceeds that of previously reported electrode materials, based on conducting polymers and carbon derivatives. Therefore, the prepared PANI–CNF–PVP aerogels are the promising materials for energy storage.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Energy Materials

  • ISSN

    2574-0962

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    3354-3365

  • UT code for WoS article

    001202403500001

  • EID of the result in the Scopus database

    2-s2.0-85190846160