All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the potential energy surface of the pyrene dimer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00599136" target="_blank" >RIV/61389013:_____/24:00599136 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1422-0067/25/19/10762" target="_blank" >https://www.mdpi.com/1422-0067/25/19/10762</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms251910762" target="_blank" >10.3390/ijms251910762</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the potential energy surface of the pyrene dimer

  • Original language description

    Knowledge of reliable geometries and associated intermolecular interaction energy (ΔE) values at key fragments of the potential energy surface (PES) in the gas phase is indispensable for the modeling of various properties of the pyrene dimer (PYD) and other important aggregate systems of a comparatively large size (ca. 50 atoms). The performance of the domain-based local pair natural orbital (DLPNO) variant of the coupled-cluster theory with singles, doubles and perturbative triples in the complete basis set limit [CCSD(T)/CBS] method for highly accurate predictions of the ΔE at a variety of regions of the PES was established for a representative set of pi-stacked dimers, which also includes the PYD. For geometries with the distance between stacked monomers close to a value of such a distance in the ΔE minimum structure, an excellent agreement between the canonical CCSD(T)/CBS results and their DLPNO counterparts was found. This finding enabled us to accurately characterize the lowest-lying configurations of the PYD, and the physical origin of their stabilization was thoroughly analyzed. The proposed DLPNO-CCSD(T)/CBS procedure should be applied with the aim of safely locating a global minimum of the PES and firmly establishing the pertaining ΔE of even larger dimers in studies of packing motifs of organic electronic devices and other novel materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1661-6596

  • e-ISSN

    1422-0067

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    10762

  • UT code for WoS article

    001332412800001

  • EID of the result in the Scopus database

    2-s2.0-85206471864