All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximization of ICRF power by SOL density tailoring with local gas injection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F16%3A00459877" target="_blank" >RIV/61389021:_____/16:00459877 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/0029-5515/56/4/046001" target="_blank" >http://dx.doi.org/10.1088/0029-5515/56/4/046001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/0029-5515/56/4/046001" target="_blank" >10.1088/0029-5515/56/4/046001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximization of ICRF power by SOL density tailoring with local gas injection

  • Original language description

    Experiments have been performed under the coordination of the International Tokamak Physics Activity (ITPA) on several tokamaks, including ASDEX Upgrade (AUG), JET and DIII-D, to characterize the increased Ion cyclotron range of frequency (ICRF) antenna loading achieved by optimizing the position of gas injection relative to the RF antennas. On DIII-D, AUG and JET (with the ITER-Like Wall) a 50% increase in the antenna loading was observed when injecting deuterium in ELMy H-mode plasmas using mid-plane inlets close to the powered antennas instead of divertor injection and, with smaller improvement when using gas inlets located at the top of the machine. The gas injection rate required for such improvements (similar to 0.7 x 10(22) el s(-1) in AUG, similar to 1.0 x 10(22) el s(-1) in JET) is compatible with the use of this technique to optimize ICRF heating during the development of plasma scenarios and no degradation of confinement was observed when using the mid-plane or top inlets compared with divertor valves. An increase in the scrape-off layer (SOL) density was measured when switching gas injection from divertor to outer mid-plane or top. On JET and DIII-D, the measured SOL density increase when using main chamber puffing is consistent with the antenna coupling resistance increase provided that the distance between the measurement lines of sight and the injection location is taken into account. Optimized gas injection was also found to be beneficial for reducing tungsten (W) sputtering at the AUG antenna limiters, and also to reduce slightly the W and nickel (Ni) content in JET plasmas. Modeling the specific effects of divertor/top/mid-plane injection on the outer mid-plane density was carried out using both the EDGE2D-EIRENE and EMC3-EIRENE plasma boundary code packages; simulations indeed indicate that outer mid-plane gas injection maximizes the density in the mid-plane close to the injection point with qualitative agreement with the AUG SOL density

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BL - Plasma physics and discharge through gases

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Fusion

  • ISSN

    0029-5515

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000373406000003

  • EID of the result in the Scopus database

    2-s2.0-84964378063