All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00480438" target="_blank" >RIV/61389021:_____/17:00480438 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1741-4326/aa6084" target="_blank" >http://dx.doi.org/10.1088/1741-4326/aa6084</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-4326/aa6084" target="_blank" >10.1088/1741-4326/aa6084</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution.

  • Original language description

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particlenloads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement HH(98,y2) to 0.95. Advances have been made with respect to detachment onset and control.nStudies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Fusion

  • ISSN

    0029-5515

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000404620600003

  • EID of the result in the Scopus database

    2-s2.0-85028471890