All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feasibility study of fast swept divertor strike point suppressing transient heat fluxes in big tokamaks.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00481373" target="_blank" >RIV/61389021:_____/17:00481373 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.fusengdes.2017.01.027" target="_blank" >http://dx.doi.org/10.1016/j.fusengdes.2017.01.027</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fusengdes.2017.01.027" target="_blank" >10.1016/j.fusengdes.2017.01.027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feasibility study of fast swept divertor strike point suppressing transient heat fluxes in big tokamaks.

  • Original language description

    n order to avoid metal surface melting of divertor targets of big tokamak fusion reactors by localized ELM heat loads, sudden detachment loss or VDEs, we study a new technique of spreading the heat flux by harmonic divertor strike point sweeping using a dedicated divertor coil. We ran 2D dynamic heat conduction simulation using real infra-red data of large ELMs heat fluxes on JET divertor target, rescaled for EU DEMO reactor (B-0 = 6 T, I-p =21 MA, R-0 = 9 m). Aiming for the surface temperature suppression factor of 4, this requires sweeping with amplitude*frequency=7cm*2 kHz. Building the divertor coil out of 27 tons of copper, this requires 0.8 MW cooling. Triggered by analog divertor heat flux signal, dedicated dynamic Fiesta simulation scenario requires 54 capacitive energy storages at 1500 V (6mF) discharged into 54 divertor coils, each with AC current of 130kA for each ELM event for similar to 4 ms (with waiting time 40 ms). The Ix B-tor forces would yield less than 0.1 mm rotational vibrations of the coil at the ELM frequency (similar to 20 Hz). The DEMO divertor surface temperature suppression reaches factor of 9 with 18 kV, 20 cm, 7.5 kHz, 400 kA. We also calculate system requirements (0.6mF, 5 kV & 60kA -> suppression factor = 2) for ASDEX Upgrade using the upper divertor coil. Since we found no show-stoppers, this technique seems attractive for big tokamaks.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20305 - Nuclear related engineering; (nuclear physics to be 1.3);

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fusion Engineering and Design

  • ISSN

    0920-3796

  • e-ISSN

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    4

  • Pages from-to

    646-649

  • UT code for WoS article

    000418992000134

  • EID of the result in the Scopus database

    2-s2.0-85011103413