All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Material design problems of plasma-chemical reactors for disposal perfluorinated compounds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00487169" target="_blank" >RIV/61389021:_____/17:00487169 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Material design problems of plasma-chemical reactors for disposal perfluorinated compounds

  • Original language description

    Reduction of perfluorinated gases emissions from semiconductor industry has recently introduced a serious problem from both technological and economic side. With respect to chemistry of the decomposition reactions the most effective abatement techniques developed up to now consists in the interaction of those gaseous pollutants with several types of plasmas. In the framework of Czech-Taiwanese bilateral project No. 17-10246J 'Decomposition of Perfluorinated Compounds and Fluorinated Ozone Depleting Substances' a new plasmochemical reactor design is to be solved. In this reactor the plasma abatement process consisting of interaction of the plasma generated by unique watter stabilized H-WSP plasma torch at temperatures rangingnfrom 2000 K up to 25,000 K with the treated gases will be carried out. However, the main product generated in the reactor during the steam plasma abatement process is hydrogen fluoride which causes corrosion of almost every construction material. The aim pursued by the work presented is to search for the materials resistant to exposition of HF even at high temperatures. To investigate corrosion resistance of construction materials with thermal stability within temperature interval 2700-3000 °C titan nitride, boron nitride, and silicon carbide have been selected. The samples of those materials have been prepared by spark plasma sintering method and exposed to concentrated solution of hydrofluoric acid for which corrosion rates have been measured

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GC17-10246J" target="_blank" >GC17-10246J: Decomposition of perfluorinated compounds and fluorinated ozone depleting substances in thermal plasma jets</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 5th International Conference on Chemical Technology

  • ISBN

    978-80-86238-65-4

  • ISSN

    2336-811X

  • e-ISSN

    2336-8128

  • Number of pages

    6

  • Pages from-to

    267-272

  • Publisher name

    Czech Society of Industrial Chemistry

  • Place of publication

    Prague

  • Event location

    Mikulov

  • Event date

    Apr 10, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article