All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wavelength dependence of laser plasma interaction related to shock ignition approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F18%3A00501664" target="_blank" >RIV/61389021:_____/18:00501664 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/18:00501352

  • Result on the web

    <a href="https://www.cambridge.org/core/journals/laser-and-particle-beams/article/wavelength-dependence-of-laser-plasma-interaction-related-to-shock-ignition-approach/32C52C8D381C8985FDFCB51F0D624B57" target="_blank" >https://www.cambridge.org/core/journals/laser-and-particle-beams/article/wavelength-dependence-of-laser-plasma-interaction-related-to-shock-ignition-approach/32C52C8D381C8985FDFCB51F0D624B57</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0263034618000447" target="_blank" >10.1017/S0263034618000447</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wavelength dependence of laser plasma interaction related to shock ignition approach

  • Original language description

    This paper provides a summary of recent research connected with the shock ignition (SI) concept of the inertial confinement fusion which was carried out at PALS. In the experiments, Cu planar targets coated with a thin CH layer were used. Two-beam irradiation experiment was applied to investigate the effect of preliminary produced plasma to shock-wave generation. The 1ω or 3ω main beam with a high intensity >1015 W/cm2 generates shock wave, while the other 1ω beam with the intensity below 1014 W/cm2 creates CH pre-plasma simulating the pre-compressed plasma related to SI. Influence of laser wavelength on absorbed energy transfer to shock wave was studied by means of femtosecond interferometry and measuring the crater volume. To characterize the hot electron and ion emission, two-dimensional (2D) Kα-imaging of Cu plasma and grid collector measurements were used. In single 1ω beam experiments energy transport by fast electrons produced by resonant absorption made a significant contribution to shock-wave pressure. However, two-beam experiments with 1ω main beam show that the pre-plasma is strongly degrading the scalelength which leads to decreasing the fast electron energy contribution to shock pressure. In both the single 3ω beam experiments and the two-beam experiments with the 3ω main beam, do not show any clear influence of fast electron transport on shock-wave pressure. The non-monotonic behavior of the scalelength at changing the laser beam focal radius in both presence and absence of pre-plasma reflects the competition of plasma motion and electron heat conduction under the conditions of one-dimensional and 2D plasma expansion at large and small focal radii, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Laser and Particle Beams

  • ISSN

    0263-0346

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    405-426

  • UT code for WoS article

    000451709500017

  • EID of the result in the Scopus database

    2-s2.0-85056709485