Determination of the spectral variation origin in high-order harmonic generation in noble gases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F18%3A00503467" target="_blank" >RIV/61389021:_____/18:00503467 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/18:00501475
Result on the web
<a href="https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.033414" target="_blank" >https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.033414</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.98.033414" target="_blank" >10.1103/PhysRevA.98.033414</a>
Alternative languages
Result language
angličtina
Original language name
Determination of the spectral variation origin in high-order harmonic generation in noble gases
Original language description
One key parameter in the high-order harmonic generation (HHG) phenomenon is the exact frequency of the generated harmonic field. Its deviation from perfect harmonics of the laser frequency can be explained by considering (i) the single-atom laser-matter interaction and (ii) the spectral changes of the driving laser. In this work, we perform an experimental and theoretical study of the causes that generate spectral changes in the HHG radiation. We measured the driving-laser spectral shift after HHG in a long medium by using a correction factor to take into account the multiple possible HHG initiation distances along the laser path. We separate out the contribution of laser spectral shift from the resultant high-harmonic spectral shift in order to elucidate the microscopic effect of spectral shift in HHG. Therefore, in some cases we are able to identify the dominant electron trajectory from the experimental data. Our investigations lead to valuable conclusions about the atomic dipole phase contribution to a high-harmonic spectral shift. We demonstrate that the significant contribution of a long electron path leads to a high-harmonic shift, which differs from that expected from the driving laser. Moreover, we assess the origin of the high-order harmonics spectral broadening and provide an explanation for the narrowest high-harmonic spectral width in our experiment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review A
ISSN
2469-9926
e-ISSN
—
Volume of the periodical
98
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000445171900007
EID of the result in the Scopus database
2-s2.0-85053831958