Non-equilibrium kinetics of the ground and excited states in N2-O2 under nanosecond discharge conditions: extended scheme and comparison with available experiments observations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F18%3A00507356" target="_blank" >RIV/61389021:_____/18:00507356 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/18:00101749
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1361-6463/aadcd1" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6463/aadcd1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6463/aadcd1" target="_blank" >10.1088/1361-6463/aadcd1</a>
Alternative languages
Result language
angličtina
Original language name
Non-equilibrium kinetics of the ground and excited states in N2-O2 under nanosecond discharge conditions: extended scheme and comparison with available experiments observations
Original language description
A numerical OD kinetic model is developed here to simulate the detailed kinetics of the ground and excited electronic states of atmospheric gases occurring under streamer discharge conditions. The model is based on an extended kinetic scheme that involves state-to-state vibrational kinetics of the ground electronic states of N-2, O-2 and NO diatomics, including e-V, V-V and V-T energy transfers, and contains about 10(4 )processes for more than 500 tracked state-specific states (including the higher excited and autoionising states of N-I/O-I atomic species), and also for state-non-specific species. This scheme takes into account the most important radiative processes occurring in N-2 and N-2-O-2 mixtures that are of diagnostic interest, including the extreme ultraviolet and vacuum ultraviolet radiation produced by many excited and autoionising states of N-I/O-I. The dependence of the rates of electron-impact processes on the reduced electric field E/N is found by solving the Boltzmann equation for electrons in the two-term approximation using the Boltzmann equation solver Open Source library, BOLOS.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics D-Applied Physics
ISSN
0022-3727
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
50
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
504004
UT code for WoS article
000448153600002
EID of the result in the Scopus database
2-s2.0-85055509228