All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Formation mechanism and microstructure characterization of nickel-aluminum intertwining interface in cold spray

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F18%3A00521659" target="_blank" >RIV/61389021:_____/18:00521659 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0257897218300574?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0257897218300574?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.surfcoat.2018.01.049" target="_blank" >10.1016/j.surfcoat.2018.01.049</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Formation mechanism and microstructure characterization of nickel-aluminum intertwining interface in cold spray

  • Original language description

    Experimental investigation was carried out to explore the formation mechanism of nickel-aluminum intertwining interface in cold spray, and to characterize the microstructure of deposited nickel particles at the intertwining interface. Shear stress was found to induce the intertwining interface through elongating and breaking of the nickel particles at the coating-substrate interface. The in-situ temperature measurement indicated that the temperature at the intertwining interface did not exceed the recrystallization temperature of nickel during the entire deposition process, suggesting that the nickel particles at the intertwining interface were in solid state rather than thermally softened viscous state. Electron channeling contrast (ECC) and electron backscatter diffraction (EBSD) imaging revealed a development of elongated subgrain (200 nm < D < 1 μm) and localized equiaxed ultrafine grain (D < 200 nm) microstructure within the highly deformed and fractured nickel particles at the intertwining interface. Such microstructures were induced by the dislocation accumulation due to the high strain/strain-rate plastic deformation and grain refinement caused by adiabatic temperature rise, respectively. Moreover, equiaxed ultrafine grains were also found to localize within a shear band near the center of the nickel particles, which experimentally confirms the existence of shear stress at the intertwining interface.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Surface and Coatings Technology

  • ISSN

    0257-8972

  • e-ISSN

  • Volume of the periodical

    337

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    6

  • Pages from-to

    447-452

  • UT code for WoS article

    000430643900052

  • EID of the result in the Scopus database

    2-s2.0-85041415364