A new generalized inequality for covariance in N dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F19%3A00500419" target="_blank" >RIV/61389021:_____/19:00500419 - isvavai.cz</a>
Result on the web
<a href="https://www.hindawi.com/journals/mpe/2019/6963493/" target="_blank" >https://www.hindawi.com/journals/mpe/2019/6963493/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2019/6963493" target="_blank" >10.1155/2019/6963493</a>
Alternative languages
Result language
angličtina
Original language name
A new generalized inequality for covariance in N dimensions
Original language description
Inspired by the work of Zhefei He and Mingjin Wang which was published in the Journal of Inequalities and Applications in 2015, this paper further generalizes some related results to the case of multidimensional random variables. The resulting inequality for covariance is then applied to different multidimensional statistical distributions (multiuniform, multinomial, and multinormal). Coordinate dependence of the inequality is also examined. The obtained formulas could be useful for making estimates in multivariate statistics.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Problems in Engineering
ISSN
1024-123X
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—